19 research outputs found

    Robustness study of a flexible zero-energy house

    Get PDF
    The U.S. Department of Energy launched the 5th Solar-Decathlon-competition, defying student teams from all over the world to conceive a house powered exclusively by the sun. Team Belgium, of Ghent University, conceived the E-Cube, a modular and flexible house, that could be adapted depending on the inhabitants, the building site and the climate. This paper focuses on that last aspect: the robustness and flexibility of the energy concept and the design, depending on the climate it is built in. Different climates are selected for the analyses, reaching from climates with extreme winters (Canada: Saskatoon) to arid climates (US: Las Vegas), through milder climates (Belgium: Ukkel and US: Washington D.C.). To cover both locally (Belgian) and internationally used energy-assessment procedures both the Flemish EPB-software as well as the PHPP-software are used. Furthermore, dynamic simulations in Trnsys are carried out to obtain more detailed and accurate feedback on the buildings’ dynamic thermal response. Through simulations with these three calculation methods, energy robustness is tested and alternative solutions for the building envelope are proposed, adapting the building to its boundary conditions. This paper presents the results from this study, analyzing the differences due to the climate, the calculation method and the design options

    Genetic Burden of TNNI3K in Diagnostic Testing of Patients With Dilated Cardiomyopathy and Supraventricular Arrhythmias

    Get PDF
    BACKGROUND: Genetic variants in TNNI3K (troponin-I interacting kinase) have previously been associated with dilated cardiomyopathy (DCM), cardiac conduction disease, and supraventricular tachycardias. However, the link between TNNI3K variants and these cardiac phenotypes shows a lack of consensus concerning phenotype and protein function. METHODS: We describe a systematic retrospective study of a cohort of patients undergoing genetic testing for cardiac arrhythmias and cardiomyopathy including TNNI3K. We further performed burden testing of TNNI3K in the UK Biobank. For 2 novel TNNI3K variants, we tested cosegregation. TNNI3K kinase function was estimated by TNNI3K autophosphorylation assays.RESULTS: We demonstrate enrichment of rare coding TNNI3K variants in DCM patients in the Amsterdam cohort. In the UK Biobank, we observed an association between TNNI3K missense (but not loss-of-function) variants and DCM and atrial fibrillation. Furthermore, we demonstrate genetic segregation for 2 rare variants, TNNI3K-p.Ile512Thr and TNNI3K-p.His592Tyr, with phenotypes consisting of DCM, cardiac conduction disease, and supraventricular tachycardia, together with increased autophosphorylation. In contrast, TNNI3K-p.Arg556_Asn590del, a likely benign variant, demonstrated depleted autophosphorylation. CONCLUSIONS: Our findings demonstrate an increased burden of rare coding TNNI3K variants in cardiac patients with DCM. Furthermore, we present 2 novel likely pathogenic TNNI3K variants with increased autophosphorylation, suggesting that enhanced autophosphorylation is likely to drive pathogenicity.</p

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Comparison of optimal designs for stick-frame wall assemblies of different bay sizes

    No full text
    This paper aims to demonstrate a typical optimization process that is applicable to the design of stick-frame structures. A 10-meter load-bearing wall is optimized considering different bay sizes with the objective of minimizing the use of wood. The results of our study indicate that the amount of wood needed to build a single story wall increases dramatically at bay sizes larger than about 90 cm. This seems to correlate well with common notions that framing systems that use smaller lumber dimensions spaced at shorter distances are more efficient than heavy timber systems. The efficiency of such light framing systems however does not seem to be affected significantly when decreasing bay size to very small dimensions. This may suggest that more efficient manufacturing procedures can be more instrumental if we wish to decrease the cost of similar wall assemblies

    Feasibility and optimization of rigidified inflatable structures for housing

    No full text
    Rigidified inflatable structures (RIS), previously used and tested in space technology applications, are of potential interest to residential construction. RIS technology is examined and the case of a single, exterior wall subjected to wind and roof load is considered. A design approach for RIS technology in residential construction is presented. Models based on three different materials and three different loading conditions are analyzed and optimized. The optimization problem statement minimizes material volume subject to: permissible stresses, maximum allowable deflection, and minimum membrane thickness. Design criteria include yield stress, deflection, and buckling. Optimum range of membrane thicknesses and number of bays are determined for each load and material case. Practical issues involving manufacturing and packaging are considered as additional design considerations. Additional suggested research involving reinforcing membranes and cavity filling is discussed. The work presented makes a significant step in establishing the feasibility of RIS for housing applications
    corecore